martes, 17 de septiembre de 2013

TEMA 1 MATEMÁTICAS. REPASO DE NUMEROS ENTEROS


Operaciones con números enteros

Suma de números enteros

1. Si los números enteros tienen el mismo signo, se suman los valores absolutos y al resultado se le coloca el signo común.
3 + 5 = 8
(−3) + (−5) = − 8
2. Si números enteros son de distinto signo, se restan los valores absolutos (al mayor le restamos el menor) y al resultado se le coloca el signo del número de mayor valor absoluto.
− 3 + 5 = 2
3 + (−5) = − 2

Propiedades de la suma de números enteros

1. Asociativa:
(a + b) + c = a + (b + c) ·
(2 + 3) + (− 5) = 2 + [3 + (− 5)]
5 − 5 = 2 + (− 2)
0 = 0 

2.  Conmutativa:
a + b = b + a
2 + (− 5) = (− 5) + 2
− 3 = − 3

3. Elemento neutro:
a + 0 = a
(−5) + 0 = − 5

4. Elemento opuesto
a + (-a) = 0
5 + (−5) = 0
−(−5) = 5


Resta de números enteros

La diferencia de los números enteros se obtiene sumando al minuendo el opuesto del sustraendo.
A – b = a + (-b)
7 − 5 = 2
7 − (−5) = 7 + 5 = 12

Propiedades de la resta de números enteros

1. No es Conmutativa:
a – b ≠ b – a
5 − 2 ≠ 2 − 5

 

 

Multiplicación de números enteros

La multiplicación de varios números enteros es otro número entero, que tiene como valor absoluto el producto de los valores absolutos y, como signo, el que se obtiene de la aplicación de la regla de los signos.

Regla de los signos

+ por + es igual a +
- por - es igual a +
+ por - es igual a -
- por + es igual a -




2 · 5 = 10
(−2) · (−5) = 10
2 · (−5) = − 10
(−2) · 5 = − 10

Propiedades de la multiplicación de números enteros

1. Asociativa:
(a · b) · c = a · (b · c)
(2 · 3) · (−5) = 2· [(3 · (−5)]
6 · (−5) = 2 · (−15)
-30 = -30 

2. Conmutativa:
a · b = b · a
2 · (−5) = (−5) · 2
-10 = -10 

3.Elemento neutro:
a ·1 = a
(−5)· 1 = (−5)

4. Distributiva:

a · (b + c) = a · b + a · c
(−2)· (3 + 5) = (−2) · 3 + (−2) · 5
(−2)· 8 =- 6 – 10
-16 = -16 

5. Sacar factor común:
a · b + a · c = a · (b + c)
(−2) · 3 + (−2) · 5 = (−2) · (3 + 5)

División de números enteros

La división de dos números enteros es otro número entero, que tiene como valor absoluto el cociente de los valores absolutos y, como signo, el que se obtiene de la aplicación de la regla de los signos.
10 : 5 = 2
(−10) : (−5) = 2
10 : (−5) = − 2
(−10) : 5 = − 2

Propiedades de la división de números enteros


1. No es Conmutativo:
a : b ≠ b : a
6 : (−2) ≠ (−2) : 6

Potencia de números enteros

La potencia de exponente natural de un número entero es otro número entero, cuyo valor absoluto es el valor absoluto de la potencia y cuyo signo es el que se deduce de la aplicación de las siguientes reglas:
1. Las potencias de exponente par son siempre positivas.
2. Las potencias de exponente impar tienen el mismo signo de la base.

Propiedades

A) a0 = 1 ·
B) a1 = a
C) am · a n = am+n
(−2)5 ·(−2)2 = (−2)5+2 = (−2)7 = −128
D) am : a n = am - n
(−2)5 : (−2)2 = (−2)5 - 2 = (−2)3 = −8
E) (am)n = am · n
[(−2)3]2 = (−2)6 = 64
F) an · b n = (a · b) n
(−2)3 · (3)3 = (−6) 3 = −216
G) an : b n = (a : b) n
(−6)3 : 3 3 = (−2)3 = −8

 H) Potencia de exponente negativo es igual a la inversa de esa potencia pero con exponente positivo.


 

 

Raíz cuadrada de un número entero

Las raíces cuadradas de números enteros tienen dos signos: positivo y negativo.

El radicando es siempre un número positivo o igual a cero, ya que se trata del cuadrado número.


Operaciones combinadas con números enteros

Prioridades en las operaciones

1º.Efectuar las operaciones entre paréntesis, corchetes y llaves..
2º.Calcular las potencias y raíces.
3º.Efectuar los productos y cocientes.
4º.Realizar las sumas y restas.


No hay comentarios:

Publicar un comentario